欢迎来到神奇下载!我们唯一域名是:www.sqxzz.com

函数可微的条件

分类:综合资讯 作者:小恐恐 浏览:48 更新时间:2023-05-14 20:31:56 来源:神奇下载

本文介绍了函数可微的条件。要证明函数在(0,0)点可微的充要条件就是洞前尺证明f(x,y)-f(0,0)=Ax+By+o(x^2+y^2)^(1/2),即证明lim[f(x,y)-f(0,0)-Ax-By]/(x^2+y^2)^(1/2)=0。通过令y=0,然后取极限,可得到A和B都等于0,因此充要条件为lim[f(x,y)-f(0,0)]/(x^2+y^2)^(1/2)=0,证明二元函数可微性。喜欢的小伙伴不要再犹豫了,跟着神奇下载网编辑一起了解了解吧。希望能够帮助到大家!

函数可微的条件

函数可微的条件 函数可微的充要条件——洞前尺

要证明函数在(0,0)点可微的充要条件就是洞前尺证明f(x,y)-f(0,0)=Ax+By+o(x^2+y^2)^(1/2),即证明lim[f(x,y)-f(0,0)-Ax-By]/(x^2+y^2)^(1/2)=0,实际上只要找到满足条件悔升的AB存在即可因此可令y=0,则x趋于0时,lim[f(x,y)-f(0,0)-Ax-By]/(x^2+y^2)^(1/2)=lim[f(x,0)-f(0,0)-Ax]/x的绝对值=fx(0,0)-A=0,所以A=0,同理B=0,故充要条件为lim[f(x,y)-f(0,0)]/(x^2+y^2)^(敞丁搬股纳高植噶邦拴鲍茎1/2)=0

证明二元函数可微性:逗雹虚 判定二元函数的可微性,关键要理解二元函数连续、偏导数存在、方向导数存在、偏导数存在且连续这四个概念与可微之间的关系。本文着重分析这四山燃种关系,给出判定二元函数在某点可微的方法。关键词: 二元函数 连续 偏导数 可微 方向导数对于一元函数,可微性比较容易判定。因为一元函数在某个点连续、可导、可微这三个概念的关系是很清楚的,可简单地肆首表示为:可微圳可导圯连续。首先,对于以一元函数,比较简单,可微一定可导,可导一定可微。对于多元函数:偏导数存在不一定可微,可微一定存在偏导(还有,偏导数存在时函数不一定连续)二元函数,可微的充要条件是: z=f(x,y)在(Xo,Yo)处的偏导数f`x(Xo,Yo),f`y(Xo,Yo)存在 且 {Δz-[f`x(x0,y0)h+f`y (x0,y0)k]}/ ρ=0 ( ρ→0) 其中 k=Δx h=Δy ρ=就是动点和定点的距离,那个式子 根下(x-xo)2+(y-yo)2。证明方法:1、用定义去验证。 2、利用充分条件 验证偏导函数连续。二元可微的条件:必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在。充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

二元函数可微的定义是函数z=f(x,y)在点(x,y)的全增量Δz=f(x+Δx,y+Δy)-f(x,y)可以表示成Δz=AΔx+BΔy+o(ρ)。

令x=y=0,则全增量Δz=f(Δx,Δy)-f(0,0),将符号Δx,Δy换成x,y来表示弊兆缓,则(x,y)→(0,0)时函数f(x,y)的Δz=f(x,y)-f(0,0)=-2x+y+o(ρ),符合定义的要求,所以f(x,y)在点(0,0)处可微。

二元函数可微的条件

1、二元函数可微的必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在。

2、二元函数可微的充分条件:若函数对x和y的偏导数在这点的某一邻域猜穗内都存在且均在这点连续,则该函数在这点可微。

3、多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。

4、设平面点集D包含于R^2,若按照某对应法则f,D中每租模一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数。

对于一元函数有,可微 = 可导= 连续= 可积

对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不悄行一定可微,因此有:可微= 偏导数存在= 连续= 可积。

可导与连续的关系:可导必连续,连续不一定可导;

可微与连续的关系:可微与可导是一样的;

可积与连续的关系:可积不一定连续,连续必定可积;

可导与可积的关系:可导一般可积,可积推不出一定可导;

扩展资料:

可导,即设y=f(x)是一个单变量函数启族哗, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。

函数可导的条件:

如果穗悄一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

函数可微的条件是当且仅当其满足洞前尺,即在某点附近可将函数表示为一次函数与余项之和,在某点处导数存在。通过证明洞前尺的形式,利用极限的思想得到A和B都等于0,从而得到函数可微的充要条件。关于函数可微的条件主题就介绍到这里,希望能帮助喜欢的网友!更多精彩主题,可以收藏我们神奇下载网,您的支持是我们不断进步的动力!

相关文章

永恒仙域兑换码有哪些?

暗区突围双排领十连怎么玩?

向僵尸开炮8个礼包怎么领取?

《向僵尸开炮》怎么玩?

绝区零雨果值得培养吗?

百度搜有红包活动怎么参与?

向僵尸开炮齐射宝石怎么获得?

向僵尸开炮冰爆系宝石有哪些?

向僵尸开炮98关怎么过?

向僵尸开炮113关怎么过?

近期热门

1
文件搜索软件哪个好 Everything 文件搜索工具 一款速度非常快的文件搜索工具。官网描述为“基于名称实时 […]
2
苹果手机打电话没声音微信不能发语音倒是能听对方的语音 根据你说的情况分析,你的手机话筒坏了也就是麦克风坏了,而 […]
3
搜不到无线网怎么回事 1.打开桌面右下角的网络图标发现没有显示无线网络列表。在【开始】菜单打开控制面板,选择控 […]
4
台湾注音法怎么打出来 红 ㄏㄨㄥ二声 紫 ㄗ三声 蓝 ㄌㄢ 二声 张 ㄓㄤ 一声 菱ㄌ一ㄥ 二声 琳ㄌ一ㄣ 二 […]
5
然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:(…
6
手机桌面上的app如何隐藏 手机桌面上的app隐藏的方法 1、安卓手机去设置——应用程序管理,找到后删除(前提 […]
7
苹果如何在日历上设置生日并且可以让它每年里都有这一项?发现我设置的到了第二年就没有来了 苹果的日历无法支持这一 […]
8
电子邮件怎么下载 问题说的不清楚。是将电子邮件中的文件下载呢,还是将电子邮件存在本地电脑上? 上述两种都与您使 […]
9
远程访问指的是什么? [1]中文名远程访问外文名Remoteaccess领域计算机网络1具体应用2用户分类3需 […]
10
当我们手机出现故障时很多人第一反应就会选择重启手机,但是大家可能不知道重启手机究竟会给手机带来多大的作用呢?其实重启手机可以解决手机出现的一…

声明:本站所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助 转载需标注!

Copyright © 2018-2023 All Rights Reserved. 神奇下载网站备案编号:苏ICP备12036411号

抵制不良游戏软件,拒绝盗版。 注意自我保护,谨防受骗上当。 适度娱乐益脑,沉迷伤身。合理安排时间,享受健康生活。

共 21 次查询,耗时 1.394 秒