欢迎来到神奇下载!我们唯一域名是:www.sqxzz.com

有理数概念和无理数区别

分类:综合资讯 作者:小玥 浏览:59 更新时间:2023-05-14 20:16:39 来源:神奇下载

本文介绍了有理数和无理数的概念、定义和区别。有理数是整数和分数的集合,可以写作两个整数的比。而无理数则是不能表示成两个整数的比的数,是非循环小数。两者的概念不同,有理数可分为正、负两类,而无理数则指那些不属于有理数集合的数。关键词:有理数、无理数、正负、小数、分数。感兴趣的网友,一定不要错过哦!一起和神奇下载网编辑看看吧

有理数概念和无理数区别

有理数概念和无理数区别 有理数和无理数的定义与区别

有理数和无理数是相对的两种缓答概念,那两者之间有什么区别呢下面是由我为大家整理的“有理数和无理数的定义是什么 有哪些区别”,仅供参考,欢迎大家阅读本文。

有理数

数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。

无理数

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

有理数和无理数的区别

1、两者概念不同。

有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。

无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。

2、两者性质不同。

有理数扰埋慧的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。

无理数的性质是由整数的比率或分数构成的数字。

3、两者范围不同。

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。

而无理数是指实数范围内,不能表示成两个整数之比的数。

拓展阅读:无理数的判定方法

无理数也称为无限不循环小数,常见的无理数主要包括以下几种形式:

1、含π的数,如:2π等;

2、根式,如:√5等;

3、函数式,如:lg2,sin1°等;

无理数也可以通过非终止的连续分数来处理。

无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆液棚周率等。

而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比。

区别如下:

1性质不同

有理肆散数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写稿雹锋作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

2范围不同

有理数集键晌是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。

3结构不同

有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。

参考资料来源:百度百科--有理数

参考资料来源:百度百科--无理数

有理数和无理数是数学中的概念,用于描述数字的类型。有理数是整数和分数的集合,可以写作两个整数的比,而无理数则是不能表示成两个整数的比的数。两者的概念和定义不同,有理数可分为正、负两类,而无理数则是指那些不属于有理数集合的数。无理数通常以非循环小数的形式出现。了解这些概念和区别对于深入理解数学和在实际运用中有所帮助。对于有理数概念和无理数区别主题就介绍到这里,希望能帮助热爱的网友们!更多丰富主题,请多关注神奇下载网,你们的支持是我们更新的动力!

相关文章

永恒仙域兑换码有哪些?

暗区突围双排领十连怎么玩?

向僵尸开炮8个礼包怎么领取?

《向僵尸开炮》怎么玩?

绝区零雨果值得培养吗?

百度搜有红包活动怎么参与?

向僵尸开炮齐射宝石怎么获得?

向僵尸开炮冰爆系宝石有哪些?

向僵尸开炮98关怎么过?

向僵尸开炮113关怎么过?

近期热门

1
文件搜索软件哪个好 Everything 文件搜索工具 一款速度非常快的文件搜索工具。官网描述为“基于名称实时 […]
2
苹果手机打电话没声音微信不能发语音倒是能听对方的语音 根据你说的情况分析,你的手机话筒坏了也就是麦克风坏了,而 […]
3
搜不到无线网怎么回事 1.打开桌面右下角的网络图标发现没有显示无线网络列表。在【开始】菜单打开控制面板,选择控 […]
4
台湾注音法怎么打出来 红 ㄏㄨㄥ二声 紫 ㄗ三声 蓝 ㄌㄢ 二声 张 ㄓㄤ 一声 菱ㄌ一ㄥ 二声 琳ㄌ一ㄣ 二 […]
5
然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:(…
6
手机桌面上的app如何隐藏 手机桌面上的app隐藏的方法 1、安卓手机去设置——应用程序管理,找到后删除(前提 […]
7
苹果如何在日历上设置生日并且可以让它每年里都有这一项?发现我设置的到了第二年就没有来了 苹果的日历无法支持这一 […]
8
电子邮件怎么下载 问题说的不清楚。是将电子邮件中的文件下载呢,还是将电子邮件存在本地电脑上? 上述两种都与您使 […]
9
远程访问指的是什么? [1]中文名远程访问外文名Remoteaccess领域计算机网络1具体应用2用户分类3需 […]
10
当我们手机出现故障时很多人第一反应就会选择重启手机,但是大家可能不知道重启手机究竟会给手机带来多大的作用呢?其实重启手机可以解决手机出现的一…

声明:本站所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助 转载需标注!

Copyright © 2018-2023 All Rights Reserved. 神奇下载网站备案编号:苏ICP备12036411号

抵制不良游戏软件,拒绝盗版。 注意自我保护,谨防受骗上当。 适度娱乐益脑,沉迷伤身。合理安排时间,享受健康生活。

共 21 次查询,耗时 1.471 秒