欢迎来到神奇下载!我们唯一域名是:www.sqxzz.com

定义域是指x还是f括号里面的

分类:综合资讯 作者:小敏 浏览:84 更新时间:2023-05-14 20:11:06 来源:神奇下载

本文介绍了函数定义域的概念和作用,以及函数定义域分为抽象函数、一般函数和函数应用题三种类型的题目。其中函数定义域指自变量x的取值范围,是函数三要素之一。常用的定义域符号是字母D。理解函数定义域的概念对于学习数学中的其他知识点非常重要。还有不清楚的小伙伴,不要错过哦!继续和神奇下载网编辑了往下看吧

定义域是指x还是f括号里面的

定义域是指x还是f括号里面的 函数定义域及其作用和求解方法

定义域是x,定义域(domainofdefinition)指自变量x的取值范围,是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。

定义一:设x、y是两个变量,变量x的变化范围为D,镇陪如亮旅手果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

定义二:A,B是两个非空数集,从集合敬嫌A到集合B的一个映射,叫做从集合A到集合B的一个函数。记作或其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围。

f(x)中x表示自变量。f(x)是烂并因变量。xE(0,1)

f(x^2+1)表示f(x)与g(x)的复合函数,其中,g(x)=x^2+1

如果f(x)定义域为xE(0,1) , 则f(x^2+1)定尺衫义域为:

x^2+1E(0,1)

x^2 0 xE空集。

因此f(x^2+1)定义域陵历腔为空集。

总之f(g(x))定义域指是x,而不是g(x)

什么叫函数的定义域函数定义域是指该函数的有效范围,其关于原点对称是指它有效值关于原点对称 。以下是我为大家整理的关于函数的定义域,欢迎大家前来阅读!

函数的定义域

(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;

如果一个函数是具体的,它的定义域我们不难理解。但如果一个函数是抽象的,它的定义域就难以捉摸。

例如:y=f(x) 1≤x≤2与y=f(x+1)的定义域相同吗值域相同吗如果已知f(x)的定义域是x∈ [1,2],f(x+1)的定义域是什么

因为f(x)的定义域是 x ∈ [1,2],即是说对1≤x≤2中的每一个数值f(x)都有函数值,超出这个范围内的任何一个数值f(x)都没有函数值。例如3就没有函数值,即f⑶就无意义。因此,当x+1的取值超出了[1,2]这个范围,f(x+1)也就没有了函数值,所以f(x+1)的定义域是1≤x+1≤2这个不等式的解集,也就是说f(x+1)中x+1的值域是f(x)的定义域,又由于1≤x+1≤2故f(x+1)的值域与f(x)(1≤x≤2)的值域也就自然相同了。

看是不是同一个函数,因为都是f,所以是同一个

(是不是统一函数只要看前面的字母是不是同一个,注意大小写也要一样才是同一函数)

题目中的“已知函数f(x)”中的x是一个抽象的概念,

x可以代替f括号中任意表达式,

如果他的定义域是(a,b)

那么,x+m和x-m的定义域(定义域都是指括号内x的取值范围)都是(a,b)

就高中课程而言,函数定义域是说函数f(x)中,x的取值范围。

二、求函数的定义域:

求函数的定义域:

y=1/x 分母不等于0;

y=sprx 根号内大于等于0;

y=logaX 对数底数大于0且不等于1,真数大于0;

函数定义域简介

f(x)是函数源裂蚂的符号,它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法雹埋则的代表,它可以由f(x)的解析式决定。例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。

函数定义域认识

我们可以从以下几个方面来认识f(x)。

第一:对代数式的认识。每一个代数式它的本质就是一个函数。象x2-1这个代数式,它就是一个函数,其自变量是x,对x的每一个值x2-1都有唯一的值与之对应,所以x2-1的所有值的集合就是这个函数的值域。

第二:对抽象数的认识,对于一个没有具体解析式的抽象函数,由于我们不知道它的具体对应法则也难以知道它的自变、定义域、值域,很难理解它的符号及其意义。

例如:f(x+1)的自变量是什么呢它的对应法则还是f吗f(x+1)的自变量是x,它的对应法则不是f。

我们不妨作如下假设,如果f(x)=x2+1,那么f(x+1)=(x+1)2+1,f(x+1)与(x+1)2+1这个代数式相等,即源高:(x+1)2+1的自变量就是f(x+1)的自变量。(x+1)2+1的对应法则是先把自变量加1再平方,然后再加上1。

再如,f(x)与f(t)是同一个函数吗

只须列举一个特殊函数说明。

显然,f(x)与f(t)它们的对应法则是相同的,如果x的取值范围与 t的取值范围是相同的,则f(x)与f(t)就是相同的函数,否则,它们就是对应法则相同而定义域不同的函数了。

例:已知f(x+1)=x²+1 ,f(x+1)的定义域为[0,2],求f(x)解析式和定义域

设x+1=t,则;x=t-1,那么用t表示自变量f的函数为:(也就是把x=t-1代入f(x+1)=x²+1中)

f(t)=f(x+1)=(t-1)²+1

=t²-2t+1+1

=t²-2t+2

所以,f(t)=t²-2t+2, 则f(x)=x²-2x+2

或者用这样的 方法 ——更直观:

令 f(x+1)=x²+1 中的x=x-1,这样就更直观了,把x=x-1代入 f(x+1)=x²+1,那么:

f(x)=f[(x-1)+1]=(x-1)²+1

=x²-2x+1+1

=x²-2x+2

所以,f(x)=x²-2x+2

而f(x)与f(t)必须x与t的取值范围相同,才是相同的函数,

由t=x+1,f(x+1)的定义域为[0,2],可知道:t∈[1,3]

f(x)=x²-2x+2的定义域为:x∈[1,3]

综上所述,f(x)=x²-2x+2(x∈[1,3]

函数定义域区别值域

值域定义

函数中,因变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

常用的求值域的方法

(1)化归法;(2)图象法(数形结合),

(3)函数单调性法,

(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等[1]

函数定义域误区介绍

关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗

定义域 指该函数的有效范围,其关于原点对称枯戚仔是指它有效值关于没汪原点对称 。函数的定义域仔察就是使得这个函数关系式有意义的实数的全体构成的集合。例如:函数y=2x+1,规定其定义域为-10,10,就是对称的。

函数的定义域包括自变量x的所有可能取值,也就是函数能够接受的输入值的范围。要正确求出函数的定义域,需要根据函数的性质和题目要求进行分析,在解决函数应用题时特别需要注意。掌握函数定义域的相关知识和方法,能够更好地理解数学中的其他概念和理论。上面的内容即是关于定义域是指x还是f括号里面的资讯全部了,希望能够帮到到网友们!更多丰富资讯,请继续关注神奇下载网,感谢您的支持,我们会更加努力更新!

相关文章

永恒仙域兑换码有哪些?

暗区突围双排领十连怎么玩?

向僵尸开炮8个礼包怎么领取?

《向僵尸开炮》怎么玩?

绝区零雨果值得培养吗?

百度搜有红包活动怎么参与?

向僵尸开炮齐射宝石怎么获得?

向僵尸开炮冰爆系宝石有哪些?

向僵尸开炮98关怎么过?

向僵尸开炮113关怎么过?

近期热门

1
文件搜索软件哪个好 Everything 文件搜索工具 一款速度非常快的文件搜索工具。官网描述为“基于名称实时 […]
2
苹果手机打电话没声音微信不能发语音倒是能听对方的语音 根据你说的情况分析,你的手机话筒坏了也就是麦克风坏了,而 […]
3
搜不到无线网怎么回事 1.打开桌面右下角的网络图标发现没有显示无线网络列表。在【开始】菜单打开控制面板,选择控 […]
4
台湾注音法怎么打出来 红 ㄏㄨㄥ二声 紫 ㄗ三声 蓝 ㄌㄢ 二声 张 ㄓㄤ 一声 菱ㄌ一ㄥ 二声 琳ㄌ一ㄣ 二 […]
5
然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:(…
6
手机桌面上的app如何隐藏 手机桌面上的app隐藏的方法 1、安卓手机去设置——应用程序管理,找到后删除(前提 […]
7
苹果如何在日历上设置生日并且可以让它每年里都有这一项?发现我设置的到了第二年就没有来了 苹果的日历无法支持这一 […]
8
电子邮件怎么下载 问题说的不清楚。是将电子邮件中的文件下载呢,还是将电子邮件存在本地电脑上? 上述两种都与您使 […]
9
远程访问指的是什么? [1]中文名远程访问外文名Remoteaccess领域计算机网络1具体应用2用户分类3需 […]
10
当我们手机出现故障时很多人第一反应就会选择重启手机,但是大家可能不知道重启手机究竟会给手机带来多大的作用呢?其实重启手机可以解决手机出现的一…

声明:本站所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助 转载需标注!

Copyright © 2018-2023 All Rights Reserved. 神奇下载网站备案编号:苏ICP备12036411号

抵制不良游戏软件,拒绝盗版。 注意自我保护,谨防受骗上当。 适度娱乐益脑,沉迷伤身。合理安排时间,享受健康生活。

共 21 次查询,耗时 1.431 秒