移项是解方程中常用的操作,将方程中某一项从等号的一边移到另一边时,需要先改变该项的符号后再移动。这是因为根据减法法则,减去一个数等于加上这个数的相反数。因此,在移项时,需要将该项的相反数加到移动到的那一边。还有不清楚的小伙伴,不要再犹豫了!一起和神奇下载网小编了看一下吧
移项变号法则口诀 解方程的常用操作之移项变号法则
把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。注意:“移项”是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
相关解释
为什么一定要先改变移动的项的符号后才能从方程的一边移到另一边呢? 我们可以这样理解: 根据减法法则:a-b=a+(-b),即减去一个数等于加上这个数的相反数。 当我们想把左边的某项(如x)移到右边时,其实就是在左边减去了(x)这一项,由据同解原理,我们也必须在右边减去这一项,再根据减法法则,右边就须加上这项(x)的相反数,所以,左边的项(x)减掉后(从有到无),右边就出现他的相反数了(从无到有)。给人的感觉就象是左边的项改变符号后移到了右边。 把方程右边的某些项移到左边,是同一个道理。
编辑本段“移项”重要四点
一、何谓移项
例1 解方程5x+2=7x-8. 为了使方程化为ax=b的形式,我们就要把同类项合并,但它们又不在等号的同侧,如何合并?不妨我们利用等式的基本性质,在方程的两边都减去2,然后在方程的两边都减去7x,这样就得到:5x-7x=-8-2,然后再合并同类项就可以了这里的2就改变符号移到了方程的右边,7x就改变符号移到了方程的左边,这种变形相当于把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.
二、移项的根据是什么
由上分析,我们看到移项的原理就是根据等式的基本性质1,在方程的两边都加上(或减去)同一个数或同一个整式.
三、怎样进行移项
我们还是先看上面的引例:解方程5x+2=7x-8. 分析:为了使方程化为ax=b的形式,未知项可以移到方程的左边,已知项可以移到方程的右边,或者把未知项可以移到方程的右边,而把已知项移到方程的左边,于是我们根据移项的法则,可以得到下面两种解法. 解法1:移项,得5x-7x=-8-2,合并同类项,得-2x=-10,系数化1,得:x=5. 解法2:移项,得2+8=7x-5x,合并同类项,得10=2x,系数化1,得:x=5.(最后,口算验根.) 结合解法1和解法2,启发我们总结出求解像这样斗锋信的一元一次方程时,它的移项规律是什么.(一般地,把含有未知数的项移到一边,不含未知数的项移到另一边),习惯上多把含有未知数的项移到左边,有时为了简单也可以基行移到右边. 比较一下两种解法,未知项移动的方向不同,但都能把方程化为最简形式ax=b,进而求出方程的解。
四、移项要注意什么
我们还是先看一个简单的例子: 例2 解方程6-2x=5-3x 解:移项,得-2x+3x=5-6,合并同类项,得x=-1 总结:通过以上两个例子,我们看到:移项要变号!不移的项不得变号,移项时,左右两边先写原来不移的项,再写移来的项,希望同学们注意!
编辑本段例题
例1 判断下面的移项对不对,如果不对,应怎样改正?
(1)从 7+x=13 得到 x=13+7 ;
(2)从 5x=4x+8 得到 5x - 4x=8 ;
(3)从 3x - 2=-x得空轮到 3x+x=2+1;
(4)从 8x=7x - 2得到8x-7x=2 ;
分析: 判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变. 解:
(1)不对,等号左边的7移到等号右边应改变符号.正确应为: x=13-7
(2)对.
(3)不对.等号左端的-2移到等号右边改变了符号,但等号右边的 移到等号左边没有改变等号.正确应为: 3x+x=2
(4)不对.等号右边的 移到等号左边,变为 是对的,但等号右边的-2仍在等号的右边没有移项,不应变号.正确应为:8x-7x=-2
有理数的加法运算:同号相加一边倒;异号相加"大"减"小",符号跟着大的跑;绝对值相等"零"正好。[注]"大"减"小"是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
"代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)
单项式运算:加、减、乘、除、胡拦乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同竖旁级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀"左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了"。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象余做橡)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀"123,321,三九二十七"既可。
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分"跑不了",对角相等也有用,"两组对角"才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在"△"现;延长两腰交一点,"△"中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。
正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.
经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.
函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
去掉括号和括号前面的-号,括咐轮号里的每一项都要变号:
如:a-(b-c+d)=a-b+c-d
解方程中,移项要变号--将等号一边的某一项移到等号的另一边去,必须要变号:
如:5x-6=4x+8
移项: 5x-4x=8+6
不等式中的不等号改变方向:
不等式两边同乘以一个负数或同除以一个负数,不等号要改顷宴变方向:
如: -2x 4 , (-1/2)x 4
x -2 , 雀简银 x -8
只求系数代数和,字母、指数不变样
一、 初中数学
(1)合并同类项口诀:合并同类项,法则不能忘,只求系数和,字母指数是原样。
(2)分解因式口诀:
首先提取公因式,然后考虑用公式,
十字相乘试一试,分组分解要合适。
四法若都行不通,折添展换反复试,
结果必是连乘式,相同结果幂形式。
(3)“相似”证题口诀:遇等积,化等比,横找、竖找,找相似,找不到,别泄气,等线段、等比来代替;遇等比,化等积,利用射影和圆幂。
(4)解直角三角形时,三角函数选用口诀:有斜用弦,无斜用切,宁乘勿除,取原避中。
(5)去添括号法则:去括号、添括号,关键看符号;括号前是正号,去添括号不变号;括号前是负号,去添括号都变号。
(6)解一元一次方程口诀:已知未知要分离,分离方法只需移,移项须变号,乘除要颠倒。
(7)解分式方程口诀:同类最简公分母,化成整式写清楚,求得解后须验裂铅兆根,原(根)留、增(根)舍别含糊。
(8)一元一次不等式组的解集:(数轴法)同右取右,同左取左,左右相交取中间左右相背是无解;(概念法)大取大,小取小,大小、小大取中间,大大小小没有了。
(9)自变量的取值范围口诀:分式分母不为零,偶次根下负不行;零次底数不为零,整式、奇次方根全能行。
(10)对称点坐肆租标口诀:对称坐标要记牢,相关位置别混淆。X轴对称y相反,y轴对称x相反。原点对称最好记,横纵坐标都相反。
(11)辅助线,怎么添?找出规律是关键。题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连;三角形的两中点,连接则成中位线;;三角形中有中线,延长中线翻番;有弦可作弦心距,常把半径直径连。
有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。注“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减激含移项要变号,乘除移了要颠倒。 恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
移项法则就一条啊:
移到另一边,符号改变。
譬如,3x+3=-4
现在我要把3移薯亮到右边
3前面的符号是+,所以移到另一边就是负
故而3x=-4-3
而反过来,如果我行手姿们是想把4移到左边呢?
4之前的符号是-,移动到左边就变+
于是3x+3+4=0
这个移项规则不档绝仅对数字有用,用字母表示的数,或者是一个整式,仍然有用。
譬如5x-(x+3)=4(x-7)
我们想把(x+3)整个移去右边,那也一样,前面是-,所以移过去就变+
5x=4(x-7)+(x+3)
移项变号法则是解方程的重要方法,可以用来将方程中的某一项从一边移到另一边。在移项时,需要先改变该项的符号后再移动,并且需要注意移项的顺序,以保证方程的解不变。上面即是关于移项变号法则口诀文章全部内容了,希望能够帮到到朋友们!更多精彩资讯,请继续关注神奇下载网,您的支持是我们不断进步的动力!
相关文章