欢迎来到神奇下载!我们唯一域名是:www.sqxzz.com

中位线的定义

分类:综合资讯 作者:小陈 浏览:52 更新时间:2023-05-13 21:36:40 来源:神奇下载

中位线是数学中经常用到的概念,其定义在三角形和梯形中有所不同。三角形的中位线是连结三角形两边中点的线段,而梯形的中位线是连结梯形两腰中点的线段。中位线定理是数学中的一个重要定理,它指出三角形和梯形的中位线平行于第三边并且等于它的一半。本文还介绍了三角形的中位线与中线的区别,以及将三角形看成上底为零的梯形时中位线的变化。热爱的小伙伴不要错过这个值得一看的资讯,跟着神奇下载网小编一起了解了解吧。希望可以对大家有所帮助哦!

中位线的定义

中位线的定义 中位线的概念和定理

中位线

1中位线概念: 

(1)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线. 

注意: 

(1)要把三角形的中位线与三角形的中线区分开.三角形中线是连结一顶点和它的对边中点的 线段,而三角形中位线是连结三角形两边中点的线段. 

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段. 

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的握团中位线. 

2中位线定理: 

(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 

(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用. 

例1 如图2-53所示.△ABC中,AD⊥BC于D,E,F,△ABC的面积.

分析 由条件知,EF,EG分别是三角形ABD和三角形ABC的中位线.利用中位线的性质及条件中所给出的数量关系,不难求出△ABC的高AD及底边BC的长.

解 由已知,E,F分别是AB,BD的中点,所以,EF是△ABD的一条中位线,所以

由条件AD+EF=12(厘米)得

EF=4(厘米),

从而 AD=8(厘米),

由于E,G分别是AB,AC的中点,所以EG是△ABC的一条中位线,所以

BC=2EG=2×6=12(厘米),

显然,AD是BC上的高,所以

例2 如图 2-54 所示.△ABC中,∠B,∠C的平分线BE,CF相交于O,AG⊥BE于G,AH⊥CF于H.

(1)求证:GH‖陵源BC;

(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH.

分析 若延长AG,设延长线交BC于M.由角平分线的对称性可以证明△ABG≌△MBG,从而G是AM的中点;同样,延长AH交BC于N,H是AN的中点,从而GH就是△AMN的中位线,所以GH‖BC,进而,利用△ABC的三边长可求出GH的长度.

(1)证 分别延长AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以

△ABG≌△MBG(ASA).

从而,G是AM的中点.尺皮态同理可证

△ACH≌△NCH(ASA),

从而,H是AN的中点.所以GH是△AMN的中位线,从而,HG‖MN,即

HG‖BC.

(2)解 由(1)知,△ABG≌△MBG及△ACH≌△NCH,所以

AB=BM=9厘米,AC=CN=14厘米.

又BC=18厘米,所以

BN=BC-CN=18-14=4(厘米),

MC=BC-BM=18-9=9(厘米).

从而

MN=18-4-9=5(厘米),

说明 (1)在本题证明过程中,我们事实上证明了等腰三角形顶角平分线三线合一(即等腰三角形顶角的平分线也是底边的中线及垂线)性质定理的逆定理:“若三角形一个角的平分线也是该角对边的垂线,则这条平分线也是对边的中线,这个三角形是等腰三角形”.

(2)“等腰三角形三线合一定理”的下述逆命题也是正确的:“若三角形一个角的平分线也是该角对边的中线,则这个三角形是等腰三角形,这条平分线垂直于对边”.同学们不妨自己证明.

(3)从本题的证明过程中,我们得到启发:若将条件“∠B,∠C的平分线”改为“∠B(或∠C)及∠C(或∠B)的外角平分线”(如图2-55所示),或改为“∠B,∠C的外角平分线”(如图2-56所示),其余条件不变,那么,结论GH‖BC仍然成立.同学们也不妨试证.

例3 如图2-57所示.P是矩形ABCD内的一点,四边形BCPQ是平行四边形,A′,B′,C′,D′分别是AP,PB,BQ,QA的中点.求证:A′C′=B′D′.

分析 由于A′,B′,C′,D′分别是四边形APBQ的四条边AP,PB,BQ,QA的中点,有经验的同学知道A′B′C′D′是平行四边形,A′C′与B′D′则是它的对角线,从而四边形A′B′C′D′应该是矩形.利用ABCD是矩形的条件,不难证明这一点.

证 连接A′B′,B′C′,C′D′,D′A′,这四条线段依次是△APB,△BPQ,△AQB,△APQ的中位线.从而

A′B′‖AB,B′C′‖PQ,

C′D′‖AB,D′A′‖PQ,

所以,A′B′C′D′是平行四边形.由于ABCD是矩形,PCBQ是平行四边形,所以

AB⊥BC,BC‖PQ.

从而

AB⊥PQ,

所以 A′B′⊥B′C′,

所以四边形A′B′C′D′是矩形,所以

A′C′=B′D′. ①

说明 在解题过程中,人们的经验常可起到引发联想、开拓思路、扩大已知的作用.如在本题的分析中利用“四边形四边中点连线是平行四边形”这个经验,对寻求思路起了不小的作用.因此注意归纳总结,积累经验,对提高分析问题和解决问题的能力是很有益处的.

例4 如图2-58所示.在四边形ABCD中,CD>AB,E,F分别是AC,BD的中点.求证:

分析 在多边形的不等关系中,容易引发人们联想三角形中的边的不形中构造中位线,为此,取AD中点.

证 取AD中点G,连接EG,FG,在△ACD中,EG是它的中位线(已知E是AC的中点),所以

同理,由F,G分别是BD和AD的中点,从而,FG是△ABD的中位线,所以

在△EFG中,

EF>EG-FG. ③

由①,②,③

例5 如图2-59所示.梯形ABCD中,AB‖CD,E为BC的中点,AD=DC+AB.求证:DE⊥AE.

分析 本题等价于证明△AED是直角三角形,其中∠AED=90°.

在E点(即直角三角形的直角顶点)是梯形一腰中点的启发下,添梯形的中位线作为辅助线,若能证明,该中位线是直角三角形AED的斜边(即梯形另一腰)的一半,则问题获解.

证 取梯形另一腰AD的中点F,连接EF,则EF是梯形ABCD的中位线,所以

因为AD=AB+CD,所以

从而

∠1=∠2,∠3=∠4,

所以∠2+∠3=∠1+∠4=90°(△ADE的内角和等于180°).从而

∠AED=∠2+∠3=90°,

所以 DE⊥AE.

例6 如图2-60所示.△ABC外一条直线l,D,E,F分别是三边的中点,AA1,FF1,DD1,EE1都垂直l于A1,F1,D1,E1.求证:

AA1+EE1=FF1+DD1.

分析 显然ADEF是平行四边形,对角线的交点O平分这两条对角线,OO1恰是两个梯形的公共中位线.利用中位线定理可证.

证 连接EF,EA,ED.由中位线定理知,EF‖AD,DE‖AF,所以ADEF是平行四边形,它的对角线AE,DF互相平分,设它们交于O,作OO1⊥l于O1,则OO1是梯形AA1E1E及FF1D1D的公共中位线,所以

即 AA1+EE1=FF1+DD1.

练习十四

1.已知△ABC中,D为AB的中点,E为AC上一点,AE=2CE,CD,BE交于O点,OE=2厘米.求BO的长.

2.已知△ABC中,BD,CE分别是∠ABC,∠ACB的平分线,AH⊥BD于H,AF⊥CE于F.若AB=14厘米,AC=8厘米,BC=18厘米,求FH的长.

3.已知在△ABC中,AB>AC,AD⊥BC于D,E,F,G分别是AB,BC,AC的中点.求证:∠BFE=∠EGD.

4.如图2-61所示.在四边形ABCD中,AD=BC,E,F分别是CD,AB的中点,延长AD,BC,分别交FE的延长线于H,G.求证:∠AHF=∠BGF.

5.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示).求证:∠DEF=∠HFE.

6.如图2-63所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.

7.已知在四边形ABCD中,AD>BC,E,F分别是AB,CD

中位线的性质

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。

注意:段巧

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它对边的中点,而三角形中位线是连接三角形两边中点的线段。

(2)梯形的中位线是侍燃腔连接两腰中点的线段而不是连接两底中点的线段。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

中位线的判断方法

1、根据定义:三角形两边中点之间老衫的线段为三角形的中位线。

2、经过三角形一边中点与另一边平行的直线与第三边相交,交点与中点之间的线段为三角形的中位线。

3、端点在三角形的两边上与第三边平行且等于第三边的一半的线段为三角形的中位线。

三角形的中位线是连接三角形两边中点的线段。三角形的中位线平行于三角形的第三边,并且等于第三边的1/2。

三角形中位线定义:连接三角形两边消带中点的线段叫做三角形的中位线。

定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。

特点:若在一个三角形中,一条线段是平行于一条边,且等于平行边的一半(这条线段的端点必须是交于另外两条边上的中点),这条线段就是这个三角形的中位线。

三条中位线形成的尘桥毁三角形的面积是原三角形的四分派备之一,三条中位线形成的三角形的周长是原三角形的二分之一。

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的猛辩中位线。

注意:

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。

(3)两个中位线定义间的联系:败仿可以把三角形看成是上底为零时的梯形,这时梯形的中位线察知纤就变成三角形的中位线。

中绝冲位线

1中位线概念:

(1)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.

(2)梯形中位线定义:连结梯形祥宏稿两腰中点的线段叫做梯形的中位线.

注意:

(1)要把三角形的中位线与三角形的中线区分开.三角形中线是连结一顶点和它的对边中点的 线段,而谨孝三角形中位线是连结三角形两边中点的线段.

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段.

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线.

2中位线定理:

(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线

三角形的中位线平行于第三边,并且等销茄于第三边的一半

梯形的中位线:连接梯形两腰中点的线段叫做梯形的中位拦袭线

梯形的中位线平行于底简斗兄,并且等于两底和的一半

如果一个点把一条线段分成相等的两份,这个点叫做这条线段的中点

线段的中点把原来的线段分成相等的两份

中线和中位线是一个数学术语。中线是连接三角形一个顶点和对边中点的线段,中位线是连接三角形两边中点的线段。两者定拿指义不同,粗纤位置不同,长度不同。

1、任意三角形的三条中线把三角形分成面积相等的六个部问分。中线都把三角形分成面积相等的两个部分。除此之外,任何其他通过中点的直线都不把三角形分成面积相等的两个部分。

2、三角形中,角A的中线记为内ma,角B的中线记为mb,角C的中线记为mc。

则三角形的三条中线长:

ma=(1/2)√2b^2+2c^2-a^2;

mb=(1/2)√2c^2+2a^2-b^2;

mc=(1/2)√2a^2+2b^2-c^2。

3、三角形中中线的岩敏仿交点为重心,重心分中线为2:1。

4、在一个角为30°直角三角形中,直角所对应的边上的中线为斜边的一半。

本文详细阐述了中位线的概念及定理,特别强调了三角形中位线与中线的区别,同时还介绍了如何将三角形看成梯形来理解中位线。可以说,中位线定理是数学中的基础内容之一,掌握了中位线定理有助于我们更好地理解和解决学习中的问题。以上即是中位线的定义文章全部内容了,若是网友想明白更详尽丰富资讯,敬请关注神奇下载网,您的支持是我们前进的动力!

相关文章

永恒仙域兑换码有哪些?

暗区突围双排领十连怎么玩?

向僵尸开炮8个礼包怎么领取?

《向僵尸开炮》怎么玩?

绝区零雨果值得培养吗?

百度搜有红包活动怎么参与?

向僵尸开炮齐射宝石怎么获得?

向僵尸开炮冰爆系宝石有哪些?

向僵尸开炮98关怎么过?

向僵尸开炮113关怎么过?

近期热门

1
文件搜索软件哪个好 Everything 文件搜索工具 一款速度非常快的文件搜索工具。官网描述为“基于名称实时 […]
2
苹果手机打电话没声音微信不能发语音倒是能听对方的语音 根据你说的情况分析,你的手机话筒坏了也就是麦克风坏了,而 […]
3
搜不到无线网怎么回事 1.打开桌面右下角的网络图标发现没有显示无线网络列表。在【开始】菜单打开控制面板,选择控 […]
4
台湾注音法怎么打出来 红 ㄏㄨㄥ二声 紫 ㄗ三声 蓝 ㄌㄢ 二声 张 ㄓㄤ 一声 菱ㄌ一ㄥ 二声 琳ㄌ一ㄣ 二 […]
5
然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:(…
6
手机桌面上的app如何隐藏 手机桌面上的app隐藏的方法 1、安卓手机去设置——应用程序管理,找到后删除(前提 […]
7
苹果如何在日历上设置生日并且可以让它每年里都有这一项?发现我设置的到了第二年就没有来了 苹果的日历无法支持这一 […]
8
电子邮件怎么下载 问题说的不清楚。是将电子邮件中的文件下载呢,还是将电子邮件存在本地电脑上? 上述两种都与您使 […]
9
远程访问指的是什么? [1]中文名远程访问外文名Remoteaccess领域计算机网络1具体应用2用户分类3需 […]
10
当我们手机出现故障时很多人第一反应就会选择重启手机,但是大家可能不知道重启手机究竟会给手机带来多大的作用呢?其实重启手机可以解决手机出现的一…

声明:本站所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助 转载需标注!

Copyright © 2018-2023 All Rights Reserved. 神奇下载网站备案编号:苏ICP备12036411号

抵制不良游戏软件,拒绝盗版。 注意自我保护,谨防受骗上当。 适度娱乐益脑,沉迷伤身。合理安排时间,享受健康生活。

共 21 次查询,耗时 1.590 秒